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Abstract

In this paper the origin of the coarseness error

in two-dimensional TLM meshes is investiga-

ted, and a method for compensating the coar-

seness effect without increasing the computa-

tional expenditure is presented. The efficiency

and accuracy of this method is demonstrated

by comparison with analytically exact soluti-

ons.

Introduction

It can be observed in all TLM computations that re-

sults are invariably shifted towards lower frequencies,

particularly when the structure under study has sharp

edges or corners. This phenomenon has already been

described by Shih and Hoefer in the analysis of Fim

lines with the 2D-TLM method [1]. The effect \vas cal-

led the coarseness error and attributed to the lack of

resolution of highly nonuniform electromagnetic fields

by the discretization [1, 2, 3]. In this paper the nature

of this coarseness error will be investigated in more

detail, and methods for compensating the coarseness

error without increasing the computational expendi-

ture will be presented.

Theoretical Background

TLM analysis of structures containing sharp corners

is always affected by considerable coarseness error.

For example, when the effective dielectric constant in

transmission lines or waveguides with 360° or 270° ed-

ges is computed, TLM results are always lower than

predicted by theory.

This error is mainly due to the fact that at sharp

corners there are nodes which are closer than Al to the

boundaries, but have no branch connected directly to

them, as shown in Fig. 1. While nodes C and D are dh-

rectly connected to the conducting boundary, nodes A

and B are not, even though they are in “territorial wa-

ters”. The “information distimce” between nodes ,A,

B and th~ conductor is 3A1/~2 along the paths ACE,

BDE and ADF rather than A1/(2@, the shortest

distance ,tG and BG.

ThP interaction with the boundary of nodes A and

B is thus delayed by two time steps, which leads to

nonphysical field behaviour around the edge, resulting

in reactive energy storage and, hence, an increase in

the effective dielectric constant of a structure. This is

the reason why the discrete system cannot represent

the high]y nonuniform field in the vicinity of such ed-

ges with appropriate accuracy, and it is the principal

source of the so-called coarseness error. This effect

disappoa rs ~vhcn the mesh parameter Al becomes in-

finitesimal. In the following, a method for impro~;~

the edge hehaviour of TLM will be proposed.

Directional Ca~lnpensation

In order to establish a direct link between a corner

node and the boundary it is proposed to add a fifth

branch as shown in Fig. 2. ‘The corner node itself is

shown enlarged in Fig. 3. The fifth arm is 1’ long,

runs at 45; Ivith respect to the regular arms 1 and 4,

and is terminated at its extremity by the boundary

condition impose(i by the corner.

JVe can now apply various considerations to de-

termine the characteristic admittance of the branches

and hence, the impulse scattering matrix of thki spe-

cial node.

For reasons of symm;try we must have

Y1=Y4 , (1)

and furthermore

Y3=Y* . (2)
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The node itself should exhibit an admittance conti-

nuity in diagonal direction (direction of branch .5) for

the reason that energy must be partionwf betwww the

branches in such a way that it is scattered equally in

all directions, as postulated in Huygens’s original mo-

del. Hence

Y2+Ij=Yl+Ij+I-!j . (3)

However, nothing is known yet about the distribution

of the energy among the branches 1. 4 and 5. One

can only say that for reasons of symmetry the wlergy

carried by branches 1 and 4 should be the same. Let us

assume for the moment that branch 5 carries a fraction

p of the total energy scattered into the branches 1, 4

and 5.

Finally we must consider that for reasons of syn-

chronism, impulses on branch 5 must travel @times

faster than those on the other branches, with ~ =

& = W for an ideal corner, while the velocity in

the branches 1 to 4 should be the same as in the re-

gular node branches.

Under these assumptions we can find the normali-

zed admittances of the corner node branches to be

!h=~4=l–p ; y2=y3=l

Y5 = 2p

where the exact value of p remains to be determined.

Since branches 1, 4 and 5 have characteristic ad-

mittances different from those of the remaining mesh

lines, ideal transformers must be inserted between

them (Fig. 3(b)) and the TLM mesh to avoid scat-

tering at the connection points.

Once these impedance transfortners have been in-

troduced into the impulse scattering equation, the

scattering matrix [S] for the vectors of incident and

reflected voltages [V]’ and [V]r at the outer terminals

of the ideal transformers can be written in the follo-

wing form:

_l~

11

a 2n~ 2n~
b ?kd

nb

nbb —$ ~ nbb ncd

[S] = nbb ~ -?j n~b ncd (4)

b&&a:d

&&b&l Iu
n= x n= bc

c

with the abbreviations

Nondirectional Compensation

In the above procedure the admittances of the bran-

ches cxt ending towards the corner or edge are modi-

fied. This means that not only the coordinates but

also the relative position of a node with respect to the

corner must be specified.

We have therefore studied the possibility to sim-

ply add a short-circuited $ stub of normalized ad-

mit tancp y5 to the corner node without modifying the

admittances of brancl!es 1 to 4. This leads to a simpler

scattering matrix [S], which can be written as

II
efff9

feffg

[S]= ffefg (5)

fffe9

ffffh

with the abbreviations

-(2+Y5) ; f= 2

‘= 4+y5 4+y5

2y5 ; h=y5–4

9=4+y5 4+y5

This method requires only that the coordinates of the

cornernodes be specified. Obviously the stub admit-

tance y5 will be different from its value in the directio-

nal compensation case and remains to be determined.

Determination of Corner Node Pa-

rameters

We have determined the corner node parameters by

optimizing them for best compensation of the coarsen-

ess error in the resonant frequencies of the dominant

and the first higher order mode of quarter-wave reso-

nators containing 270° and 360° field singularities. Ac-

curate resonant frequencies were obtained by a series

of TLM computations using increasingly fine meshes

and extrapolating these results for Al ~ O, as descri-

bed in [1]. Then, the same structures were computed

with coarse meshes comprising corner nodes, and their

parameters were optimized such that they yielded the

accurate reference values.

The following values were obtained:

Corner Directional Nondirectional

Type Compensation Compensation

(Popt) (Y5,0pt)

~~oo 0.115 0.181

360° 0.105 0.167
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It was found that these parameters were insensitive

to meshsize, frequency and direction of propagation in

the mesh within the usual limits for acceptable velo-

city error.

Fig. 4 to 6 demonstrate the effect of optimi-

zed coarseness error compensation for different corner

node and edge types. It can be seen that the propo-

sed techniques yield in all cases excellent results with

considerably less computational effort than uncom-

pensated TLM schemes having the same accuracy.

Residual Errors

While the proposed method practically eliminates the

major source of error (coarseness error), some lesser

errors remain. These are the dispersion of the network

[4](which can be corrected as shown in [3]) and the

truncation error [5] due to the restriction to a finite

time domain response.

Conclusions

We have demonstrated how the coarseness error in 2D-

TLM simulations can be eliminated by modifying the

properties of the nodes situated at sharp corners or ed-

ges. The compensation is achieved by adding reactive

stubs to the corner nodes. As a result, relatively coarse

TLM meshes may be used to obtain highly accurate

results. The savings in computational expenditure are

typically three orders of magnitude in 2D-TLM simu-

lations.
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(a) (b)

Figure 1: 2D-TLM network containing a 360° (a) and

a 270” (b) edge.

Figure 2: Corner node A with an additional corner

arm
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Figure 3: Corner node with a fifth arm at 45° having

a length 1’. (a) is an enlargement of the dotted box in

Fig. 2 above, (b) shows the connection of the corner

node to the TLM mesh via ideal impedance transfor-

mers (directional compensation).
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Figure 4: Effect of the directional compensation me-

chanism on the resonant frequencies of a structure

with a 360° field singularity. (a) dominant mode reso-

nance and (b) first higher order mode resonance versus

discretization Al. The parameter is p.
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Figure 5: Effect of the nondirectional compensation

mechanism on the resonant frequencies of a structure

with a 360” field singularity. (a) dominant mode reso-

nan ce and (b) first higher order mode resonance versus

discretization Al. The parameter is y5.
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Figure 6: Effect of the directional compensation me-

chanism on the resonant frequencies of a structure

with a 270° field singularity. (a) dominant mode reso-

nance and (b) first higher order mode resonance versus

discretization Al. The parameter is p.


