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Abstract

In this paper the origin of the coarseness error
in two-dimensional TLM meshes is investiga-
ted, and a method for compensating the coar-
seness effect without increasing the computa-
tional expenditure is presented. The efficiency
and accuracy of this method is demonstrated
by comparison with analytically exact soluti-
ons.

Introduction

It can be observed in all TLM computations that re-
sults are invariably shifted towards lower frequencies,
particularly when the structure under study has sharp
edges or corners. This phenomenon has already been
described by Shih and Hoefer in the analysis of Fin-
lines with the 2D-TLM method [1]. The effect was cal-
led the coarseness error and attributed to the lack of
resolution of highly nonuniform electromagnetic fields
by the discretization [1, 2, 3]. In this paper the nature
of this coarseness error will be investigated in more
detail, and methods for compensating the coarseness
error without increasing the computational expendi-
ture will be presented.

Theoretical Background

TLM analysis of structures containing sharp corners
is always affected by considerable coarseness error.
For example, when the effective dielectric constant in
transmission lines or waveguides with 360° or 270° ed-
ges is computed, TLM results are always lower than
predicted by theory.

This error is mainly due to the fact that at sharp
corners there are nodes which are closer than Al to the
boundaries, but have no branch connected directly to
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them, as shown in Fig. 1. While nodes C and D are di-
rectly connected to the conducting boundary, nodes A
and I3 are not, even though they are in “territorial wa-
ters”. The “information distance” between nodes A,
B and the conductor is 3Al/2 along the paths ACE,
BDE and ADF rather than Al/(2v/2), the shortest
distance AG and BG.

The interaction with the boundary of nodes A and
B is thus delayed by two time steps, which leads to
nonphysical field behaviour around the edge, resulting
in reactive energy storage and, hence, an increase in
the effective dielectric constant of a structure. This is
the reason why the discrete system cannot represent
the highly nonuniform field in the vicinity of such ed-
ges with appropriate accuracy, and it is the principal
source of the so-called coarseness error. This effect
disappears when the mesh parameter Al becomes in-
finitesimal. In the following, a method for improvi- -
the edge behaviour of TLM will be proposed.

Directional Compensation

In order to establish a direct link between a corner
node and the boundary it is proposed to add a fifth
branch as shown in Fig. 2. The corner node itself is
shown enlarged in Fig. 3. The fifth arm is !’ long,
runs at 45° with respect to the regular arms 1 and 4,
and is terminated at its extremity by the boundary
condition imposed by the corner.

We can now apply various considerations to de-
termine the characteristic admittance of the branches
and hence, the impulse scattering matrix of this spe-
cial node. .

For reasons of symmetry we must have

n=y , (1)

and furthermore

Ys=Y; . @)
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The node itself should exhibit an admittance conti-
nuity in diagonal direction (direction of branch 5) for
the reason that energy must be partioned hetween the
branches in such a way that it is scattered equally in
all directions, as postulated in Huygens’s original mo-
del. Hence

2+4Ys=Y1+Ys+15 (3)

However, nothing is known yet about the distribution
of the energy among the branches 1. 4 and 5. One
can only say that for reasons of symmetry the energy
carried by branches 1 and 4 should be the same. Let us
assume for the moment that branch 5 carries a fraction
p of the total energy scattered into the branches 1, 4
and 5.

Finally we must consider that for reasons of syn-
chronism, impulses on branch 5 must travel 1-times
faster than those on the other branches, with
ZIII/_Z = /2 for an ideal corner, while the velocity in
the branches 1 to 4 should be the same as in the re-
gular node branches.

Under these assumptions we can find the normali-
zed admittances of the corner node branches to be

n=v=1-p ; wp=y=1
Ys 2p
where the exact value of p remains to be determined.

Since branches 1, 4 and 5 have characteristic ad-
mittances different from those of the remaining mesh
lines, ideal transformers must be inserted between
them (Fig. 3(b)) and the TLM mesh to avoid scat-
tering at the connection points.

Once these impedance transformers have been in-
troduced into the impulse scattering equation, the
scattering matrix [S] for the vectors of incident and
reflected voltages [V]' and [V]" at the outer terminals
of the ideal transformers can be written in the follo-
wing form:

B 1 1 n 9
© 3 I 0wl
nyb —% % b n.d
[S]=| mbdb 3 -3 mb nd (4)
by o @
L gfb 2r11c 2711c ’Z’fb C
with the abbreviations
1+p l-p
2 ta=—
c=p-1 ; d=14+c=p
1
p =4/ § Mc =4/
Yb Ye
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Nondirectional Compensation

In the above procedure the admittances of the bran-
ches extending towards the corner or edge are modi-
fied. This means that not only the coordinates but
also the relative position of a node with respect to the
corner must be specified.

We have therefore studied the possibility to sim-
ply add a short-circuited —Ai! stub of normalized ad-
mittance ys to the corner node without modifying the
admittances of branches 1 to 4. This leads to a simpler
scattering matrix [S], which can be written as

e f f f 9]
f e f [ g
Sl=|f f e f g (5)
f 7 fegyg
LS f f f R
with the abbreviations

—(24+ ys 2
°T f1+ylsl) ’ f=4+y5
s, ¥t
4+ ys 4+ys

This method requires only that the coordinates of the
cornernodes be specified. Obviously the stub admit-
tance ys will be different from its value in the directio-
nal compensation case and remains to be determined.

Determination of Corner Node Pa-
rameters

We have determined the corner node parameters by
optimizing them for best compensation of the coarsen-
ess error in the resonant frequencies of the dominant
and the first higher order mode of quarter-wave reso-
nators containing 270° and 360° field singularities. Ac-
curate resonant frequencies were obtained by a series
of TLM computations using increasingly fine meshes
and extrapolating these results for Al — 0, as descri-
bed in {1]. Then, the same structures were computed
with coarse meshes comprising corner nodes, and their
parameters were optimized such that they yielded the
accurate reference values.
The following values were obtained:

Corner | Directional Nondirectional
Type Compensation | Compensation
(popt) (yS,OPt)
270° 0.115 0.181
‘360" 0.105 0.167




It was found that these parameters were insensitive
to meshsize, frequency and direction of propagation in
the mesh within the usual limits for acceptable velo-
city error.

Fig. 4 to 6 demonstrate the effect of optimi-
zed coarseness error compensation for different corner
node and edge types. It can be seen that the propo-
sed techniques yield in all cases excellent results with
considerably less computational effort than uncom-
pensated TLM schemes having the same accuracy.

Residual Errors

While the proposed method practically eliminates the
major source of error (coarseness error), some lesser
errors remain. These are the dispersion of the network
[4)(which can be corrected as shown in [3]) and the
truncation error [5] due to the restriction to a finite
time domain response.

Conclusions

We have demonstrated how the coarseness error in 2D-
TLM simulations can be eliminated by modifying the
properties of the nodes situated at sharp corners or ed-
ges. The compensation is achieved by adding reactive
stubs to the corner nodes. As aresult, relatively coarse
TLM meshes may be used to obtain highly accurate
results. The savings in computational expenditure are
typically three orders of magnitude in 2D-TLM simu-
lations.
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Figure 1: 2D-TLM network containing a 360° (a) and
a 270° (b) edge.
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Figure 2: Corner node A with an additional corner
arm
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Figure 3: Corner node with a fifth arm at 45° having
a length 1. (a) is an enlargement of the dotted box in
Fig. 2 above, (b) shows the connection of the corner
node to the TLM mesh via ideal impedance transfor-
mers (directional compensation).
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Figure 4: Effect of the directional compensation me-
chanism on the resonant frequencies of a structure
with a 360° field singularity. (a) dominant mode reso-
nance and (b) first higher order mode resonance versus
discretization Al. The parameter is p.
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Figure 5: Effect of the nondirectional compensation
mechanism on the resonant frequencies of a structure
with a 360° field singularity. (a) dominant mode reso-
nance and (b) first higher order mode resonance versus
discretization Al. The parameter is ys.
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Figure 6: Effect of the directional compensation me-
chanism on the tesonant frequencies of a structure
with a 270° field singularity. (a) dominant mode reso-
nance and (b) first higher order mode resonance versus
discretization Al. The parameter is p.
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